https://www.iotworldtoday.com/wp-content/themes/ioti_child/assets/images/logo/IoTWorldToday-mobile-logo.png
  • Home
  • News
    • Back
    • Roundups
  • Strategy
  • Special Reports
  • Business Resources
    • Back
    • Webinars
    • White Papers
    • Industry Perspectives
    • Featured Vendors
  • Other Content
    • Back
    • Q&As
    • Case Studies
    • Features
    • How-to
    • Opinion
    • Podcasts
    • Strategic Partners
    • Latest videos
  • More
    • Back
    • About Us
    • Contact
    • Advertise
    • Editorial Submissions
  • Events
Iot World Today
  • NEWSLETTER
  • Home
  • News
    • Back
    • Roundups
  • Strategy
  • Special Reports
  • Business Resources
    • Back
    • Webinars
    • White Papers
    • Industry Perspectives
    • Featured Vendors
  • Other Content
    • Back
    • Q&As
    • Case Studies
    • Features
    • How-to
    • Opinion
    • Podcasts
    • Strategic Partners
    • Latest videos
  • More
    • Back
    • About Us
    • Contact
    • Advertise
    • Editorial Submissions
  • Events
  • newsletter
  • IIoT
  • Cities
  • Energy
  • Homes/Buildings
  • Transportation/Logistics
  • Connected Health Care
  • Retail
  • AI
  • Metaverse
  • Development
  • Security
ioti.com

Smart Homes and Smart Buildings


Sponsor Content

Indoor Climate Change: Understanding the Air We Breathe Using Data

  • 15th September 2021

By Infineon Technologies (Milpitas, California); Pradyumna (P.K.) Mishra

According to the Environmental Protection Agency (EPA), the average American spends 93% of their life indoors: 87% of their life is inside buildings and another 6% of their life in automobiles. That leaves only 7% for life outside—one half of one day per week. Yet, very little of the indoor air quality, or CO2 values, either indoors, in the immediate neighborhood or at the regional level are understood. In fact, we are just beginning to understand the CO2 levels at the global level.

However, as shown in Figure 1, the detrimental impact of increasing CO2 concentration is well documented.

Figure 1. Health impact of CO2 concentrations. Source: Airthings

Data is critical to understand and appropriately respond to any situation. As W. Edwards Deming, the renowned proponent of statistical quality control, said, “Without data, you’re just another person with an opinion.”  This blog will explain CO2 from a data-science perspective and show how data can provide insights to understand and proactively control air quality, especially indoors.

MEASUREMENT OF CO2 DATA

In 1957 Dave Keeling, who was the first to make accurate measurements of CO2 in the atmosphere, chose a site high up on the slopes of the Mauna Loa volcano because he wanted to measure CO2 in air masses that would be representative of much of the Northern Hemisphere, if not the globe. The Hawaii observatory is surrounded by many miles of bare lava, without any vegetation or soil, providing an opportunity to measure “background” air, also called “baseline” air, which is defined as having a CO2 mole fraction representative of an upwind fetch of hundreds of kilometers (km). Nearby emission or removal of CO2 typically produces sharp fluctuations in space, time, and mole fraction. Figure 2 shows the historic CO2 data for several decades.

Figure 2. The increasing amount of atmospheric CO2 measured at the Mauna Loa Observatory. Source: NOAA

As part of his research, Keeling introduced the principle of a rigorous calibration strategy that is still employed today. Measurement of data from this one sensor led to the advent of climate change science. The measurement of this difference provides crucial quantitative information about the emissions and removals of CO2.

INDOOR CO2 MEASUREMENTS

CO2 values vary significantly indoors, within neighborhoods, regionally, nationally, as well as globally. Yet, the absolute value of CO2 is not that obvious or easy to measure. Most people assume that the “concentration” of CO2 in air is measured, since that terminology is commonly used in communications with the general public. The quantity that is actually determined is accurately described by the chemical term “mole fraction.” The mole fraction is defined as the number of CO2 molecules in a given number of molecules of air, after the removal of water vapor. The concentration change produced by the addition of water vapor can be greater than the CO2.

The concentration depends on many factors, such as water vapor/humidity, temperature, environmental plants/wind, as well as indoor and outdoor pollution. Even further, the amount of CO2 is higher in the Northern than in the Southern Hemisphere because of the combustion of coal, oil, and natural gas. The complexities involved in measuring and comparing CO2 values from two different locations involves teasing out such complexities making Data Science and Machine Learning (ML) ideal. Figure 3 shows the difference in CO2 concentration in dry versus wet air.

Figure 3. CO2 concentration increases in dry air compared to wet air. Source: NOAA

Part 2 of this blog will explore the type of insights that CO2 measurements can provide. If you are interested in learning more about CO2 sensors and how to track your environment, visit the Infineon website.

Tags: Smart Homes and Smart Buildings Smart Environments Industry Perspectives Sponsor Content

Related Content


  • Indoor Climate Change: Understanding the Air We Breathe Using Data (Part 2)
    Ask anyone “Did you know that rising carbon dioxide (CO2) levels can cause climate change?” and you will most likely receive a “yes”, accompanied by strong passions or opinions. However, if you ask that same person, “What is the optimal CO2 level for the air you breathe, either outside or in your home or office?” […]
  • Laundry robots
    Robotic Laundry: A New System to Automate your Washing 
    The new system identifies wrinkles and bunching in laundry to grasp and handle users’ washing loads
  • Image shows solar energy storage panels on the roof of a house
    Startup Raises $105M For Real-Time Energy Sensing Devices
    Plans are for the tech to be deployed at scale, offering consumers greater insight into their energy usage
  • Alexa
    Amazon Releases 'MASSIVE' Dataset to Boost Alexa App Ecosystem
    The company hopes to encourage developers to create apps for its Alexa smart assistant

Leave a comment Cancel reply

-or-

Log in with your IoT World Today account

Alternatively, post a comment by completing the form below:

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Newsletter

Sign up for IoT World Today newsletters: vertical industry coverage on Tuesdays and horizontal tech coverage on Thursdays.

Special Reports

Our Special Reports take an in-depth look at key topics within the IoT space. Download our latest reports.

Business Resources

Find the latest white papers and other resources from selected vendors.

Media Kit and Advertising

Want to reach our audience? Access our media kit.

DISCOVER MORE FROM INFORMA TECH

  • IoT World Series
  • Channel Futures
  • RISC-V
  • Dark Reading
  • ITPro Today
  • Web Hosting Talk

WORKING WITH US

  • Contact
  • About Us
  • Advertise
  • Login/Register

FOLLOW IoT World Today ON SOCIAL

  • Privacy
  • CCPA: “Do Not Sell My Data”
  • Cookies Policy
  • Terms
Copyright © 2022 Informa PLC. Informa PLC is registered in England and Wales with company number 8860726 whose registered and Head office is 5 Howick Place, London, SW1P 1WG.
This website uses cookies, including third party ones, to allow for analysis of how people use our website in order to improve your experience and our services. By continuing to use our website, you agree to the use of such cookies. Click here for more information on our Cookie Policy and Privacy Policy.
X