https://www.iotworldtoday.com/wp-content/themes/ioti_child/assets/images/logo/footer-logo.png
  • Home
  • News
    • Back
    • IoT World 2020 News
  • Strategy
  • Special Reports
  • Galleries
  • Business Resources
    • Back
    • Webinars
    • White Papers
    • Industry Perspectives
    • Featured Vendors
  • Other Content
    • Back
    • IoT World 2020 News
    • Q&As
    • Case Studies
    • Features
    • How-to
    • Opinion
    • Video / Podcasts
  • More
    • Back
    • About Us
    • Contact
    • Advertise
    • Strategic Partners
  • IOT World Events
    • Back
    • Internet of Things World: San Jose
    • IoT World 2020 News
Iot World Today
  • NEWSLETTER
  • Home
  • News
    • Back
    • IoT World 2020 News
  • Strategy
  • Special Reports
  • Galleries
  • Business Resources
    • Back
    • Webinars
    • White Papers
    • Industry Perspectives
    • Featured Vendors
  • Other Content
    • Back
    • IoT World 2020 News
    • Q&As
    • Case Studies
    • Features
    • How-to
    • Opinion
    • Video / Podcasts
  • More
    • Back
    • About Us
    • Contact
    • Advertise
    • Strategic Partners
  • IOT World Events
    • Back
    • Internet of Things World: San Jose
    • IoT World 2020 News
  • newsletter
  • IIoT
  • Cities
  • Energy
  • Homes/Buildings
  • Transportation/Logistics
  • Connected Health Care
  • Retail
  • AI
  • Architecture
  • Engineering/Development
  • Security
ioti.com

Supply Chain, Transportation & Logistics


Getty Images

Image shows autonomous car and self driving concept.Intelligent transport background

Autonomous Transport Advances Rely on AI, Ecosystem Progress

Autonomous Transport is an important area for AI, as it plays a large part in not only controlling vehicles, but also providing real-time decision-making.
  • Written by Michael Azoff
  • 20th November 2018

An important application for artificial intelligence (AI) is autonomous transport. All areas of transport are being investigated for autonomous control, with AI playing a large part in driving/piloting control and providing intelligent decision-making in real time based on data from an array of sensors. These include light spectrum (cameras), radio (radar), laser (lidar), positioning (global navigation satellite system, GNSS, such as GPS), inertia using inertial measurement unit, and IOT (vehicle-to-everything) communications. Ovum is seeing progress in autonomous vehicles, trucks, aviation, trains, and nautical vessels.

The December 2017 Ovum AI Reality (AIR) chart provides a qualitative view of progress in autonomous transport. 2017 saw many milestones achieved as ventures from start-ups, technology companies, and transport industry incumbents staked their position in trials and pilots. The scope of the topic is potentially huge, including regulations, legal issues, security, safety, geographical differences, smart cities and more, but this report is strictly concerned with the advance of AI in autonomous technology. The AIR chart is based on current state-of-the-art progress. In addition, we offer a view on when autonomous vehicles will become a common sight on our roads.

Autonomous Transport is Driving Toward Reality

Progress in autonomous transport is already seeing road, rail and air examples

The impact of autonomous transport on society will be huge, and will affect urban architecture, road building and parking spaces, patterns of transport use, driving/piloting skills and de-skilling, and more. In light of the role of cars in our culture, there will be a deep impact on how we live. Technology is incrementally pushing forward and the motivation exists, with recognition all round that this technology will save many lives (in the U.S. there is a traffic accident fatality every 15 minutes). There will also be job changes, and while demand for drivers/pilots will undoubtedly decrease, new jobs will be created to design, build, maintain and monitor autonomous systems.

The Society of Automotive Engineers (SAE) International defines five levels of autonomous driving (see Figure 1). In our analysis, we stretch the use of SAE levels to generic modes of transport with similar autonomous system capabilities at the corresponding levels. One provision should be noted in extending SAE this way. While mass-market vehicles will be truly autonomous with no centralized control, we expect commercial operations, at least in the first wave of this technology, to have a degree of remote monitoring, with the capability for humans to take over if necessary. This is not reflected in the SAE level

Major road transport manufacturers (Tesla, for example) envisage level 4 capability in a few years, or over 10 years, and are striving to achieve this goal. Creating an autonomous driving industry has become a nation state race. For example, the Obama administration kick-started billion dollar investments in the U.S., and in recent weeks the UK government pledged investment and relaxed regulations to encourage research in the UK, following on from its UK Autodrive initiative, which is currently running autonomous driving trials in Milton Keynes and Coventry.

In the assessment below, we refer to “level 3-4 pilots”, which should be interpreted as a system being developed for level 4, but having a test driver on board who can take over makes it in effect a level 3 system during testing. Some of the milestones in autonomous transport that helped define the December 2017 AIR chart are as follows.

  • Air taxi and drone: Volocopter demonstrated an eight-minute level 5 autonomous flight without passengers on Sept. 25, 2017 in Dubai, UAE. Amazon Prime Air is trialing a pilotless drone delivery service, with the first delivery to a real customer accomplished in December 2016 in Cambridge, UK. Unmanned aerial vehicles (UAVs) are already common in the military.
  • Airplane: Aircraft are already highly automated, and fully autonomous flying is likely in the next decade. For airlines, passenger sentiment not the technology may be the main barrier. Unlike air taxis, where airplanes fly and take off and land is highly controlled.
  • Car: Waymo (owned by Google owner Alphabet) has been trialing level 4 autonomous vehicles in Phoenix, Arizona without drivers on board since November 7, 2017. The level of activity was kick-started by Google and Tesla, but established motor manufacturers are very much in the race, including BMW, Daimler, Ford, Honda, GM, Nissan, and Toyota, as well as start-ups.
  • Ship: Level 5 autonomous ships and ferries are being developed, including by Rolls Royce, which predicts the first examples to be short-distance ships such as car ferries, and ocean-going robot cargo ships in 10 to 15 years. Norway’s Yara and Kongsberg are jointly working on building the first crewless ship, the Yara Birkeland, for cargo shipping in Norwegian waters. Autonomy will be added in stages with level 4-5 expected to be achieved by 2020.
  • Submarines: There is a history of autonomous underwater vehicles but there is activity in creation of a new generation. Boeing and the U.S. Navy are, for example, working on autonomous submarine drones.
  • Taxi, bus, shared-ride services: The first level 4 autonomous taxis were trialed in Singapore by nuTonomy in 2016. Navya offers Autonom Cab, a robot taxi designed for level 4 autonomous driving with no cockpit, steering wheel, or other manual controls. A Navya bus has been in operation in Lyon, France, since 2016. Tesla has delivered 50 vehicles to city of Dubai, UAE, for an autonomous taxi service. Waymo plans to open its autonomous taxis to passengers in Phoenix in early 2018. Zoox is planning to have customers by 2020. Uber and others are researching driverless taxis. An autonomous bus system is being trialed in Las Vegas. In December 2017, Lyft, in partnership with nuTonomy, is matching passengers in select areas of Boston with autonomous rides. The UK Transport Research Laboratory’s Harry shuttle has been trialed with the public in Greenwich, London.
  • Train: Driverless train systems have been in operation since 1967, either with a driver monitoring the automated system, or driverless but with staff on board. The first freight train using an autonomous system without a human on board ran on Oct. 2, 2017 and was operated by Rio Tinto in its iron ore network in Western Australia and monitored from an operations center in Perth.
  • Trucks: Rio Tinto has been operating level 4 autonomous trucks in its iron ore mining in Western Australia for some years. Embark and other truck operators have been piloting level 3-4 autonomous trucks on public interstate highways in the USA in 2017, with drivers taking full control over the first and last miles.

December 2017 AIR Chart on Autonomous Transport

The December 2017 AIR chart is shown in Figure 2. It is notable that road transport level 5 is still some years (perhaps a decade) away from being realized. This, however, does not take account of further improvements in the core technology, particularly AI, which is improving incrementally. Algorithms are being refined (for example, deep level architectures), computing power is increasing annually, and new AI hardware accelerators expected to reach the market in 2018 will add to this rate of improvement. These improvements in the technology will bring SAE level 4 and ultimately level 5 autonomous driving to fruition earlier than expected.

Some modes of transport are ahead of road transport. Aircraft, due to the highly regulated control of their paths, are at levels 4 and 5. Similarly, nautical vessels have less complexity in their environment and are at advanced levels.

The sheer size of the car industry makes it a particularly important area of focus. Many contenders will bring level 4 and eventually level 5 vehicles to our roads. In the U.S., there are more than 25 companies currently registered in California to trial autonomous cars. Other states attracting research include Arizona and Pennsylvania.

A metric of proficiency used by the Department of Motor Vehicles in the state of California is the number of autonomous miles achieved per disengagement. The most recent figures released relate to 2016. Ahead of the pack is Waymo (owned by Alphabet) at 5,128, followed by BMW at 638, Nissan at 246.7, and Ford at 196.7. Waymo has received the most funding of the contenders, at more than $1 billion, and has been longest established (2009), accruing the most miles of actual road testing (3.5 million) and simulation (3 billion).

Autonomous Driving Technology Is Powering Next Generation Vehicles

Because of the array of sensors needed, building autonomous vehicles is not cheap. All manufacturers use a range of different sensors, including lidar. The exception is Tesla that so far relies solely on cameras and radar. The cost of the sensors per vehicle suggests the most economical model would be for autonomous technology to be used for shared-ride and taxi services, with expensive models available in the top end of the private car market. However, the cost of the sensors continues to fall. Cruise (the GM acquisition made in 2016 to establish itself in the race), acquired lidar manufacturer Strobe in October 2017 and expects a 100 percent reduction in lidar costs.

A key provider of technology for AI-based autonomous transport is Nvidia, whose GPUs are an essential ingredient for training and inferencing AI systems. Nvidia Drive PX is an AI car computer appliance, housing Nvidia’s high-end GPUs and other advanced microprocessors and sensors, and built to support ASIL-D, the highest level of automotive functional safety. Nvidia says it has partnerships with most of the leading car manufacturers in the race to bring autonomous vehicles to the roads. Another provider of GPUs into this market is AMD. Intel announced in 2017 a partnership with AMD to deliver a joint CPU and GPU solution, and acquired Mobileye, a start-up developing autonomous driving technology. Baidu is making its Apollo autonomous driving platform part open source, and its partners include Daimler, Ford and Nvidia.

New AI hardware accelerators are expected to reach the market in 2018 and it remains to be seen if they can outperform the best GPUs, and raise the computing capability to run ever larger AI architectures that yield higher performance and accuracy. Even if these novel AI accelerators disappoint, the year-on-year improvements in GPU performance are expected to continue. We therefore see a continuing upward trend in AI system performance over the next decade.

Autonomous transport will comprise of connected machines and will therefore be part of the Internet of Things (IoT). Much IoT technology will therefore also be relevant to autonomous transport, as will smart cities, 5G, and telemetry, which will also play an important role in future autonomous transport, and create opportunities for IoT and telco vendors. Ovum expects autonomous driving capability at SAE level 4 to appear in the next few years in trucks and passenger services such as shared rides, taxis, and buses. Examples already exist. Cars at level 4 will not be good enough for people that, for example, need to rely on their car and not being able to use it when it snows is not satisfactory.

An autonomous car at level 5 is yet further away because the AI technology needs to improve. However, the current incremental pace of AI evolution means it is not a question of if but when. In the near future there will be an identical overlap between an Uber/Lyft style service, a taxi ride, and a car rental that comes with a (virtual) robot chauffeur and arrives at your door. Such car usage will reduce the number of cars needed in society, and the impact of this scenario on the car industry will be far-reaching.

Principal Analyst Michael Azoff is a member of Ovum’s IT infrastructure solutions group, leading a range of software development and lifecycle management research initiatives.

For more information about IoT research and analysis from Ovum, which belongs to the same corporate family as IoT World Today, send email to [email protected].

Tags: Supply Chain, Transportation & Logistics Other Content Features Ovum Viewpoints

Related


  • Image shows a doctor and medical assistant robot analysis and testing result of DNA on modern virtual interface, science and technology, innovative and future of medical healthcare in laboratory background.
    AR Initiatives Show Promise Amid COVID-19 Fallout
    Augmented and virtual reality may find a newfound imperative in the era of COVID-19.
  • Image shows a caravan or convoy of trucks in line on a country highway.
    Tapping IoT Data to Drive Last-Mile Delivery
    Companies are trying to get packages into the hands of customers faster, but so-called last-mile delivery can be costly.
  • A Look at Michelin’s Product-as-a-Service Strategy
    A product-as-a-service strategy requires focusing on customer experience, according to Ralph Dimenna, a senior vice president at Michelin.
  • Image shows a delivery truck being unloaded.
    Real-Time Location Systems: A Moving Target for IoT
    Many big data components mark the chain of tools for IoT location systems that drive on-time freight deliveries.

Leave a comment Cancel reply

-or-

Log in with your IoT World Today account

Alternatively, post a comment by completing the form below:

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Content

  • RPA Tools Lack AI Aura but Find Role in IoT Inventory Apps
  • 5 Autonomous Vehicle Technology Uses in Shipping and Logistics
  • Autonomous Vehicle Hopes Hinge on Crash Avoidance Technology
  • Video-Driven Data to Transform Transportation Infrastructure

News

View all

Private LTE Market Projected to Grow to $13 Billion

12th January 2021

IoT World Announces 2021 IoT World Advisory Board

9th December 2020

White Papers

View all

The eSIM Cookbook – Towards the Next Generation of Connected Devices

22nd February 2021

eSIM Delivers Greater Freedom for OEMs – by Beecham Research and Truphone

22nd February 2021

Special Reports

View all

Cybersecurity Protection Increasingly Depends on Machine Learning

28th October 2020

Webinars

View all

Weber’s Journey: How a Top Grill Maker Serves Up Connected Cooking

25th February 2021

From Insights to Action: Best Practices for Implementing Connected Device Security

15th December 2020

Galleries

View all

Top IoT Trends to Watch in 2020

26th January 2020

Five of the Most Promising Digital Health Technologies

14th January 2020

Industry Perspectives

View all

IoT Spending Holds Firm — Tempered by Dose of ‘IoT Pragmatism’

1st December 2020

The Great IoT Connectivity Lockdown

11th May 2020

Events

View all

IoT at the Edge

17th March 2021

Embedded IoT World 2021

28th April 2021 - 29th April 2021

IoT World 2021

2nd November 2021 - 4th November 2021

Twitter

IoTWorldToday, IoTWorldSeries

How IoT Devices Can Enhance the Connected Customer Experience dlvr.it/RtPcvS

24th February 2021
IoTWorldToday, IoTWorldSeries

🤝 Meet #EIOTWORLD speaker Ingo Feldner, Project Lead for Virtual #Hardware Platforms at @RobertBoschGmbH 📅 Join hi… twitter.com/i/web/status/1…

24th February 2021
IoTWorldToday, IoTWorldSeries

Developing IoT Applications with Rust: Using a Rust Development Environment dlvr.it/RtNqrk https://t.co/wOmnoz2UVT

24th February 2021
IoTWorldToday, IoTWorldSeries

Chip-Enabled Edge AI Drives Next-Gen IoT dlvr.it/RtKcMQ https://t.co/dLjBzE6Qei

23rd February 2021
IoTWorldToday, IoTWorldSeries

The eSIM Cookbook – Towards the Next Generation of Connected Devices dlvr.it/RtG5bB https://t.co/5kXa8Pnv4T

22nd February 2021
IoTWorldToday, IoTWorldSeries

eSIM Delivers Greater Freedom for OEMs – by Beecham Research and Truphone dlvr.it/RtG5Vq https://t.co/OTNqYFxsYt

22nd February 2021
IoTWorldToday, IoTWorldSeries

Emerging Edge Cloud Architecture Continues to Shake Out dlvr.it/RtFmM7 https://t.co/EJGKH71s3N

22nd February 2021
IoTWorldToday, IoTWorldSeries

Recent years have seen a surge in interest in enterprise digital transformation in Africa. #IoTWorld Africa returns… twitter.com/i/web/status/1…

22nd February 2021

Newsletter

Sign up for IoT World Today newsletters: vertical industry coverage on Tuesdays and horizontal tech coverage on Thursdays.

Special Reports

Our Special Reports take an in-depth look at key topics within the IoT space. Download our latest reports.

Business Resources

Find the latest white papers and other resources from selected vendors.

Media Kit and Advertising

Want to reach our audience? Access our media kit.

DISCOVER MORE FROM INFORMA TECH

  • IoT World Series
  • Channel Futures
  • RISC-V
  • Dark Reading
  • ITPro Today
  • Web Hosting Talk

WORKING WITH US

  • Contact
  • About Us
  • Advertise
  • Login/Register

FOLLOW IoT World Today ON SOCIAL

  • Privacy
  • CCPA: “Do Not Sell My Data”
  • Cookies Policy
  • Terms
Copyright © 2021 Informa PLC. Informa PLC is registered in England and Wales with company number 8860726 whose registered and Head office is 5 Howick Place, London, SW1P 1WG.
This website uses cookies, including third party ones, to allow for analysis of how people use our website in order to improve your experience and our services. By continuing to use our website, you agree to the use of such cookies. Click here for more information on our Cookie Policy and Privacy Policy.
X